Basic Measures for Imprecise Point Sets in R

نویسنده

  • Heinrich Kruger
چکیده

Most algorithms in computational geometry tend to assume that all input is exact, with no imprecision or error. Most real-world data however, has some imprecision (for example due to measurement error). Thus, there exists a need for algorithms that can produce meaningful output for imprecise input data. In this thesis, I present results on the computation of upper and lower bounds on various basic measures (such as diameter, width, closest pair, volume of smallest enclosing ball and volume of minimum axis aligned bounding box) for imprecise point sets in Rd. I model the imprecision by representing an imprecise point set as a set of regions (balls or polytopes), such that each point may lie anywhere within one of the regions. This work is an extension of previous research by Löffler and van Kreveld on imprecise point sets in R2, to higher dimensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Largest Bounding Box, Smallest Diameter, and Related Problems on Imprecise Points

We model imprecise points as regions in which one point must be located. We study computing the largest and smallest possible values of various basic geometric measures on sets of imprecise points, such as the diameter, width, closest pair, smallest enclosing circle, and smallest enclosing bounding box. We give efficient algorithms for most of these problems, and identify the hardness of others.

متن کامل

Construction of measures of noncompactness of $C^k(Omega)$ and $C^k_0$ and their application to functional integral-differential equations

‎In this paper‎, ‎first‎, ‎we investigate the construction of compact sets of $ C^k$ and $ C_0^k$‎ ‎by proving ``$C^k‎, ‎C_0^k-version$‎" ‎of Arzel`{a}-Ascoli theorem‎, ‎and then introduce new measures of noncompactness on these spaces‎. ‎Finally‎, ‎as an application‎, ‎we study the existence of entire solutions for a class of the functional integral-differential equations by using Darbo's fixe...

متن کامل

A note on decision making in medical investigations using new divergence measures for intuitionistic fuzzy sets

Srivastava and Maheshwari (Iranian Journal of Fuzzy Systems 13(1)(2016) 25-44) introduced a new divergence measure for intuitionisticfuzzy sets (IFSs). The properties of the proposed divergence measurewere studied and the efficiency of the proposed divergence measurein the context of medical diagnosis was also demonstrated. In thisnote, we point out some errors in ...

متن کامل

Extensions of belief functions and possibility distributions by using the imprecise Dirichlet model

A belief function can be viewed as a generalized probability function and the belief and plausibility measures can be regarded as lower and upper bounds for the probability of an event. From this point of view, the common approach for computing belief and plausibility measures may be unreasonable in many real applications because there are cases where the probability function that governs the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008